58 research outputs found

    Improvement of source and wind field input of atmospheric dispersion model by assimilation of concentration measurements: Method and applications in idealized settings

    Get PDF
    AbstractThe problem of correcting the pollutant source emission rate and the wind velocity field inputs in a puff atmospheric dispersion model by data assimilation of concentration measurements has been considered. Variational approach to data assimilation has been used, in which the specified cost function is minimized with respect to source strength and/or wind field. The analyzed wind field satisfied the constraints derived from the conditions of mass conservation and linearized flow equations for perturbations from the first guess wind field. ‘Identical twin’ numerical experiments have been performed for the validation of the method. The first guess estimation errors of source emission rate and wind field were set to a factor of up to 10 and up to 6m/s respectively. The calculations results showed that in most studied cases an improvement of vector wind difference (VWD) error by about 0.7–1m/s could be achieved. The resulting normalized mean square error (NMSE) of concentration field was also reduced significantly

    MODELLING THE CONCENTRATION FLUCTUATION AND INDIVIDUAL EXPOSURE IN COMPLEX URBAN ENVIRONMENTS

    Get PDF
    The concentrations fluctuations of a dispersing hazardous gaseous pollutant in the atmospheric boundary layer, and the hazard associated with short-term concentration levels, demonstrate the necessity of estimating the magnitude of these fluctuations using predicting models. Moreover the computation of concentration fluctuations and individual exposure in case of dispersion in realistic situations, such as built-up areas or street canyons, is of special practical interest for hazard assessment purposes. In order to predict or/and estimate the maximum expected dosage and the exposure time within which the dosage exceeds certain health limits, the knowledge of the behaviour of concentration fluctuations at the point under consideration is needed. In this study the whole effort is based on the ‘Mock Urban Setting Test – MUST’, an extensive field test carried out on a test site of the US Army in the Great Basin Desert in 2001 (Biltoft, 2001; Yee, 2004). The experimental data that was used for the model evaluation concerned the dispersion of a passive gas between street canyons which have been created by 120 standard size shipping containers. The computational simulations have been performed using the laboratory CFD code ADREA, which has been developed for simulating the dispersion and exposure of pollutants over complex geometries. The ADREA model is evaluated by comparing the model’s predictions with the observations utilizing statistical metrics and scatter plots. The present study has been performed in the frame of the Action COST 732 “Quality Assurance and Improvement of Micro-Scale Meteorological Models”

    Modelling short-term maximum individual exposure from airborne hazardous releases in urban environments. Part ΙI: Validation of a deterministic model with wind tunnel experimental data

    Get PDF
    The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%

    Advances in air quality research – current and emerging challenges

    Get PDF
    This review provides a community's perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy

    Advances in air quality research – current and emerging challenges

    Get PDF
    © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/This review provides a community’s perspective on air quality research focusing mainly on developmentsover the past decade. The article provides perspectives on current and future challenges as well asresearch needs for selected key topics. While this paper is not an exhaustive review of all research areas in thefield of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizingsources and emissions of air pollution, new air quality observations and instrumentation, advances in air qualityprediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure andhealth assessment, and air quality management and policy. In conducting the review, specific objectives were(i) to address current developments that push the boundaries of air quality research forward, (ii) to highlightthe emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guidethe direction for future research within the wider community. This review also identifies areas of particular importancefor air quality policy. The original concept of this review was borne at the International Conferenceon Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the articleincorporates a wider landscape of research literature within the field of air quality science. On air pollutionemissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources,particulate matter chemical components, shipping emissions, and the importance of considering both indoor andoutdoor sources. There is a growing need to have integrated air pollution and related observations from bothground-based and remote sensing instruments, including in particular those on satellites. The research shouldalso capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which areregulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue,with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time,one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerablepotential by providing a consistent framework for treating scales and processes, especially where thereare significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposureto air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of moresophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments.With particulate matter being one of the most important pollutants for health, research is indicating the urgentneed to understand, in particular, the role of particle number and chemical components in terms of health impact,which in turn requires improved emission inventories and models for predicting high-resolution distributions ofthese metrics over cities. The review also examines how air pollution management needs to adapt to the abovementionednew challenges and briefly considers the implications from the COVID-19 pandemic for air quality.Finally, we provide recommendations for air quality research and support for policy.Peer reviewe

    Advances in air quality research – current and emerging challenges

    Get PDF
    This review provides a community\u27s perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy

    Macroscopic findings in collagenous colitis:a multi-center, retrospective, observational cohort study

    Get PDF
    Background Collagenous colitis (CC) is by definition a histological diagnosis. However, colonoscopy often reveals characteristic endoscopic findings. The aim of this study was to evaluate the frequency and type of endoscopic findings in patients diagnosed with CC in 4 participating centers. Methods This was a retrospective study; the databases of 2 university hospitals in Edinburgh (Scotland) and Malmö (Sweden), and 2 district general hospitals in Tomelloso (Spain) and Gateshead (England) were interrogated for patients diagnosed with CC between May 2008 and August 2013. Endoscopy reports and images were retrieved and reviewed; data on lesions, sedation, bowel preparation and endoscopist experience were abstracted. Categorical data are reported as mean±SD. Fischer’s exact, chi-square and t (unpaired) tests were used to compare datasets. A two-tailed P-value of <0.05 was considered statistically significant. Results 607 patients (149 male, mean age 66.9±12.25 years) were diagnosed with CC. A total of 108/607 (17.8%) patients had one or more suggestive endoscopy findings: i.e., mucosal erythema/edema, 91/607 (15%); linear colonic mucosal defects, 12/607 (2%); or mucosal scarring, 5/607 (0.82%). For colonic mucosa erythema, there was no difference in the odds of finding erythema with the use of different bowel preparation methods (P=0.997). For colonic mucosal defects there was some evidence (P=0.005) that patients colonoscoped by experienced endoscopists had 87% less odds of developing such defects. Moreover, there was evidence that analgesia reduced the odds of developing mucosal defects by 84%. Conclusion A significant minority of patients with CC have endoscopic findings in colonoscopy. The description of such findings appears to be related to the endoscopist’s experience
    • 

    corecore